
Unsupervised Learning
无监督学习
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Supervised learning has many 
successes

• Document classification

• Protein prediction

• Face recognition

• Speech recognition

• Vehicle steering
etc.
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However…

• Labeled data can be rare or expensive in many real 
applications

– Speech

– Medical data

– Protein

– …

• Unlabeled data is much cheaper and abundant

Question: Can we use unlabeled data to help?
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Can we use unlabeled data to help?

• Unlabeled data is missing 
important information…

• But maybe still has useful 
regularities that we can use.

Unsupervised learning
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If intelligence was a cake, unsupervised learning 
would be the cake, supervised learning would 
be the icing on the cake, and reinforcement 
learning would be the cherry on the cake. We 
know how to make the icing and cherry, but 
we don’t know how to make the cake.

--Yann LeCun
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Unsupervised learning

Learning from unlabeled data (without supervision)

What can we predict from unlabeled data?
– Low-dimensional structure

• Principal Component Analysis 主元分析(PCA) (linear)

Learning 
Algorithm

Training data
D = {x1, x2 . . . , xN}

Prediction rule

6



Unsupervised learning

Learning from unlabeled data (without supervision)

What can we predict from unlabeled data?
– Low-dimensional structure

• Principal Component Analysis 主元分析(PCA) (linear)

• Manifold learning 流行学习 (non-linear)

Learning 
Algorithm

Training data
D = {x1, x2 . . . , xN}

Prediction rule

7



Unsupervised learning

Learning from unlabeled data (without supervision)

What can we predict from unlabeled data?
– Low-dimensional structure

• Principal Component Analysis 主元分析(PCA) (linear)

• Manifold learning 流行学习 (non-linear)
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Unsupervised learning

Learning from unlabeled data (without supervision)

What can we predict from unlabeled data?
– Low-dimensional structure

• Principal Component Analysis 主元分析(PCA) (linear)

• Manifold learning 流行学习 (non-linear)

– Groups or clusters in the data

– Density estimation（密度估计）

Learning 
Algorithm

Training data
D = {x1, x2 . . . , xN}

Prediction rule
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Discover low dimensional structure

PRINCIPLE COMPONENT ANALYSIS
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Principle component analysis

• What is dimensionality reduction?

• Why dimensionality reduction?

• Principal Component Analysis (PCA)

• Nonlinear PCA using Kernels
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What is dimensionality reduction?

• Dimensionality reduction refers to the mapping of the original high-
dimensional data onto a lower-dimensional space.

– Criterion for dimensionality reduction can be different based on different 
problem settings.

• Unsupervised setting: minimize the information loss

• Supervised setting: maximize the class discrimination

• Given a set of data points of d variables

Compute the linear transformation (projection)

fx1;x2;¢¢¢;xng

P 2Rd£m : x 2Rd ! y= P>x 2Rm(m<< d)
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What is dimensionality reduction?

Linear transformation

Original data

reduced data

P> 2Rm£d

x 2 Rd

y 2 Rm

P 2Rd£m : x! y= P>x 2Rm
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High-dimensional data

Gene expression Face images Handwritten digits
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Why dimensionality reduction?

• Most machine learning and data mining 
techniques may not be effective for high-
dimensional data 
– Curse of Dimensionality

– Query accuracy and efficiency degrade rapidly as the 
dimension increases.

• The intrinsic dimension may be small. 
– For example, the number of genes responsible for a 

certain type of disease may be small.
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Curse of Dimensionality
• When dimensionality increases, data 

becomes increasingly sparse in the space 
that it occupies

• Definitions of density and distance between 
points, which is critical for clustering and 
outlier detection, become less meaningful

• If N1 = 100 represents a dense sample for a 
single input problem, then N10 = 10010 is the 
sample size required for the same sampling 
density with dimension 10.

• The proportion of a hypersphere with radius 
r and dimension d, to that of a hyercube with 
sides of length 2r and dimension d converges 
to 0 as d goes to infinity — nearly all of the 
high-dimensional space is “far away” from 
the center

•Randomly generate 500 points

•Compute difference between 
max and min distance between 
any pair of points
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Why dimensionality reduction?

• Visualization: projection of high-dimensional data 
onto 2D or 3D.

• Data compression: efficient storage and retrieval.

• Noise removal: positive effect on query accuracy.
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Application of feature reduction

• Face recognition

• Handwritten digit recognition

• Text mining

• Image retrieval

• Microarray data analysis

• Protein classification

……
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What is Principal Component Analysis?

• Principal component analysis (PCA) 
– Reduce the dimensionality of a data set  by finding a new 

set of variables, smaller than the original set of variables
– Retains most of the sample's information.
– Useful for the compression and classification of data. 

• By information we mean the variation present in the 
sample, given by the correlations between the original 
variables.  
– The new variables, called principal components (PCs), are 

uncorrelated, and are ordered by the fraction of the total 
information each retains.
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Principal components (PCs)

• Given n points in a d dimensional space, for large d, how 
does one project on to a low dimensional space while 
preserving broad trends in the data and allowing it to be 
visualized?
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Geometric picture of principal components

• Given n points in a d dimensional space, for large d, how 
does one project on to a 1 dimensional space?

• Choose a line that fits the data so the points are spread 
out well along the line
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Geometric picture of principal components

• Formally, minimize sum of squares of distances to the 
line.

• Why sum of squares?
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• Minimizing sum of squares of distances to the line is the same 
as maximizing the sum of squares of the projections on that 
line, thanks to Pythagoras.

Algebraic Interpretation – 1D
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Geometric picture of principal components
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Geometric picture of principal components

• the 1st PC       is a minimum distance fit to a line in   X  
space

• the 2nd PC       is a minimum distance fit to a line in the 
plane perpendicular （垂直于） to the 1st PC

PCs are a series of linear least squares fits to a sample, each 
orthogonal （垂直于） to all the previous.

25

u1

u2



Algebraic derivation of PCs

• Given a sample of n observations on a vector of d
variables  

• First project the data onto a one-dimensional space 
with a d-dimensional vector                      :  

• Find       to maximize the variance the projected data:

Where                              and 
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fx1;x2;¢¢¢;xng 2 Rd

fu>1 x1;u>1 x2;¢¢¢;u>1 xng
u1 : u

>
1 u1 = 1

u1

1

n

nX

i=1

(u>1 xi ¡ u>1 ¹x)
2 = u>1 Su1

¹x = 1
n

Pn

i=1 xi S = 1
n

Pn

i=1(xi ¡ ¹x)(xi ¡ ¹x)>



Algebraic derivation of PCs

• To solve

• Let     be a Lagrangian multiplier      
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max
u1

u>1 Su1 subject to u>1 u1 = 1

¸

L = u>1 Su1 + 1̧(1¡ u>1 u1)

@L

@u1

= Su1 ¡ 1̧u1 = 0

Su1 = 1̧u1

) u1 is an eigenvector

u>1 Su1 = 1̧

) u1 corresponds to the eigenvector with the largest eigenvalue 1̧
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Algebraic derivation of PCs

• To find the second component

• Solve the following 

– is the eigenvector with the second largest eigenvalue

……
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max
u2

u>2 Su2 subject to u>2 u2 = 1 & u>1 u2 = 0

u2 2̧



Algebraic derivation of PCs

• Main steps for computing PCs

– Calculate the covariance matrix S

or first center the data: 

let                                                ; then

– Find the first m eigenvectors

– Form the projection matrix 

– A new test point can be projected as:
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S = 1
n

Pn

i=1(xi ¡ ¹x)(xi ¡ ¹x)>

fx01;x02;¢¢¢;x0ng and ¹x0 = 0

S = 1
n
XX>X = [x01;x

0
2;¢¢¢;x0n] 2 Rd£n

fuigmi=1

P = [u1 u2 ¢¢¢um] 2Rd£m

xnew 2Rd ! P>xnew 2Rm



Algebraic derivation of PCs

• Getting the old data back?

– If P is a square matrix, we can recover x by

– Here P is not full, but we can still recover x 
by                                , and lose some information 

• Objective

– Lose least amount of information
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y= P>x 2 Rm

x= (P>)¡1y= Py = PP>x

x= Py= PP>x



Optimality property of PCA

Dimension reduction

Reconstruction

X 2Rd£n! Y = P>X 2Rm£n!X0 = PP>X 2Rd£n

P> 2Rm£d
X 2Rd£n

P>X 2Rm£n

P 2Rd£m

X0 2 Rd£n
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Optimality property of PCA

The matrix P consisting of the first m eigenvectors of the 
covariance matrix S solves the following min problem:

Main theoretical result:

PCA projection minimizes the reconstruction error among all 
linear projections of size m.

arg min
P2Rd£m

kX ¡ X 0k2 = arg min
P2Rd£m

kX ¡ PP>Xk2

= arg max
P2Rd£m

trace(X>PP>X)

= arg max
P2Rd£m

trace(P>XX>P )

= arg max
P2Rd£m

trace(P>SP )

subject to P>P = Im
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PCA for image compression

m=1 m=2 m=4 m=8

m=16 m=32 m=64 m=100
Original 
Image
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Nonlinear PCA using Kernels

Rewrite PCA in terms of dot products

Assume the data has been centered, i.e.

The covariance matrix S can be written as

If     is an eigenvector of S corresponding to nonzero 
eigenvalue

Eigenvectors of S lie in the space spanned by all data points.
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Nonlinear PCA using Kernels
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The covariance matrix can be written in matrix form:
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Comments on PCA

• Linear dimensionality reduction method

• Can be kernelized

• Many nonlinear dimensionality reduction methods (Isomap, 
graph Laplacian eigenmap, and locally linear embedding/LLE) 
can be described as kernel PCA with a special kernel

• Non-convex optimization problem

• But easy to solve…
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From supervised to unsupervised classification

CLUSTERING
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Clustering

Are there any “groups” in the data ?
What is each group ?
How many ?
How to identify them?
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Clustering

• Group the data objects into subsets 
or “clusters”:
– High similarity within clusters
– Low similarity between clusters

• A common and important task that 
finds many applications in Science, 
Engineering, information Science, and 
other places
– Group genes that perform the same 

function
– Group individuals that has similar 

political view
– Categorize documents of similar topics
– Identify similar objects from pictures
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Clustering

Input: training set of input points

Output: assignment of each point to a cluster

where
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Dtrain = fx1; :::;xng

(C(1); :::;C(n)) C(i) 2 f1; :::; kg



K-means clustering

• Create centers and assign points to centers to 
minimize sum of squared distance

42



K-means objective

• Each cluster is represented by a centroid

• Encode each point by its cluster center, pay a 
cost for deviation

• Loss function based on reconstruction
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¹

Losskmeans

nX

j=1

k¹C(j) ¡ xjk2



K-means algorithm

• Goal: 

• Strategy: alternating minimization
– Step 1: if know cluster centers     , can find best C

– Step 2: if know cluster assignments C, can find best 
cluster centers 
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min
¹

min
C

nX

j=1

k¹C(j) ¡ xjk2
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K-means algorithm

Optimize loss function

(1) Fix    , optimize C

Assign each point to the nearest cluster center

(2) Fix C, optimize 

Solution: average of points in cluster i, exactly second step (re-center)

min
¹

min
C

nX

j=1

k¹C(j) ¡ xjk2
Loss(¹;C)

¹

min
C(1);C(2);:::;C(n)

nX

j=1

k¹C(j) ¡ xjk2

¹

min
¹(1);¹(2);:::;¹(k)

nX

j=1

k¹C(j) ¡ xjk2
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More on K-Means objective

• solving for U yields: 
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Z 0X =

2
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sum of cluster 1 rows in X
...

sum of cluster k rows in X

3
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Z0Z =

2
64
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3
75

(Z 0Z)¡1 =

2
64

1=(# cluster 1) ¢¢¢ 0
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3
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U

tr ((X ¡ ZU)(X ¡ ZU)0)

U = ZyX = (Z0Z)¡1Z0X



More on K-Means objective

• solving for U yields: 
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A few facts about K-means

• Simple and efficient

• Always converges
– Why?

– To a local minimum

• But…
– K-means problem is NP-hard

– No global solution

– Not robust to noise and outliers
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K-means for image compression



Want to Learn More?

• 机器学习，周志华

• 统计学习方法，李航

• Andrew Ng’s Machine learning online course (Coursera)
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Wrapping up Machine Learning
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Machine Learning in AI
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Machine Learning History
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Our Machine Learning Results

• Image impainting
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Our Machine Learning Results
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• Traffic modeling



Our Machine Learning Results

• Image tagging
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Our Machine Learning Results

• Background modeling
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Our Machine Learning Results

• Word representation
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Madrid - Spain ≈ Paris - France, 
good - best ≈ great – greatest
king-man ≈queen-woman



Our Machine Learning Results

• Video description with bullet-screen 
comments 
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Our Machine Learning Results

• Poetry generation from images
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What We Actually Do?
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Wrapping up the course



课程大纲

• 第一部分：人工智能概述/Introduction and Agents 
(chapters 1,2)

• 第二部分：问题求解/Search (chapters 3,4,5,6)

• 第三部分：知识与推理/Logic (chapters 7,8,9)

• 第四部分：不确定知识与推理/Uncertainty (chapters 
13,14)

• 第五部分：学习/Learning (chapters 18,20)
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Chap1-2. Intro

• Rational agents

• The performance measure evaluates the environment 
sequence

• PEAS descriptions define task environments

• Environments are categorized along several dimensions:

observable? deterministic? episodic? static? discrete? single-
agent?
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Chap3. Uninformed search

A problem can be defined by 4 items: initial state（初始状态）, actions（行
动） or successor function（后继函数）, goal test（目标测试）, path 
cost（路径损耗）

A solution is a sequence of actions leading from the initial state to a goal state

Uninformed search strategies use only the information available in the 
problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search
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Chap4. Informed search

• Best-first search（最佳优先搜索）
– Greedy best-first search
– A* search

• Heuristics
– Heuristics（启发函数）
– Admissible heuristics（可采纳的启发函数）
– Relaxed problems（松弛问题）

• Local search algorithms
– Hill-climbing search
– Simulated annealing search（模拟退火搜索）
– Genetic algorithms （遗传算法）
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Chap6. Game search

• Games

• Perfect play（最优策略）

– minimax decisions

– α-β pruning（剪枝）

• Games of chance（包含几率因素的游戏）

– ExpectiMinmax（期望极小极大值）
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Chap7. Logical agents

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundness: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses 
Resolution is complete for propositional logic

– 合取范式的转化
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Chap8-9. First-Order Logic

• New concepts
– Objects（对象）

– Relations（关系）

– Functions（函数）

• Inference
– Unification合一

– Forward and backward chaining

– Resolution
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Chap13. Uncertainty

Joint probability distribution specifies probability of every atomic 
event

全联合概率分布指定了对随机变量的每种完全赋值，即每个原子
事件的概率

Inference
– Queries can be answered by summing over atomic events

可以通过把对应于查询命题的原子事件的条目相加的方式来回答
查询

– For nontrivial domains, we must find a way to reduce the joint size
• Independence and conditional independence provide the tools

Bayes‘ Rule 
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Chap14. Bayesian networks

• Bayesian networks provide a natural representation 
for (causally induced) conditional independence

• Topology + CPTs = compact representation of joint 
distribution

• Inference

• Naïve Bayes model

72



Chap18,20. Learning

• Supervised learning

– Given input data descriptions D = {x1, x2 . . . , xn}, and 
target values y1, y2, . . . yn, learn a prediction function

– Classification: y1, y2, . . . yn are discrete class labels

• Naïve Bayes model

• Decision tree learning

• K nearest neighbor

• Least squares classification

• SVM 

– Regression: y continuous

• Least squares regression

( )f yx
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Notes on building an SVM

• Make sure you understand the math

• Use some simple synthetic data（模拟数据） to verify

• Use the same kernel during training and testing

• When calculating b, remember

to use the same kernel!

• Check αi to debug

– Do they satisfy the constraints?
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Calculate b in SVM

Dual optimization problem:

b can be recovered by 

max
®

nX

i=1

®i ¡
1

2

nX

i;j=1

®i®j y iyj (x
>
i x j ) sub ject to ®i ¸ 0 ; 8 i

P n

i=1
®iy i = 0

b = yi ¡
nX

j=1

®jyjK(xi;xj) for any i that ®i 6= 0

b = yi ¡
nX

j=1

®jyjK(xi;xj) for any i with maximal ®i

b = avgi:®i 6=0

0
@yi ¡

nX

j=1

®jyjK(xi;xj)

1
A
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Chap18,20. Learning

• Unsupervised learning

– Given input data descriptions D = {x1, x2 . . . , xn}, 
learn a prediction function

– Clustering: y discrete

• Kmeans

– Dimensionality reduction: y continuous

• Principle component analysis
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