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Supervised learning has many
SuUCcesses

e Document classification
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Protein prediction
* Face recognition

e Speech recognition

* Vehicle steering
etc.




However...

* Labeled data can be rare or expensive in many real

applications

Task: speech analysis

— SpeeCh @ Switchboard dataset

. @ telephone conversation transcription
— Medical data

— Protein film = f ihn uvhglnm
be all = bcl b iy iy tr ao tr ao 1.dl

@ 400 hours annotation time for each hour of speech

* Unlabeled data is much cheaper and abundant

Question: Can we use unlabeled data to help?



Can we use unlabeled data to help?

* Unlabeled data is missing
important information...

* But maybe still has useful
regularities that we can use.




If intelligence was a cake, unsupervised learning

would be the cake, supervised learning would
oe the icing on the cake, and reinforcement
earning would be the cherry on the cake. We
<now how to make the icing and cherry, but
we don’t know how to make the cake.

--Yann LeCun



Unsupervised learning

Learning from unlabeled data (without supervision)

Training data - Learning
D=1{x;, ..., %y} |

Prediction rule

) f(x) >y

Algorithm

What can we predict from unlabeled data?

— Low-dimensional structure
* Principal Component Analysis &= JG 73 HT(PCA) (linear)

5 _Q ) _'-;'U"g

) R TR R A

> 9 Q" n .»‘C‘(."'\'\ ¥ q oK

| "o PRl S A R T

O G ¢ R o8 s

ga‘; 5% @«3‘-{3 D %6

o gBlGo ‘2' 2N A\ G\
RAR W, \"A* : )

& g L
T80
* . a




Unsupervised learning

Learning from unlabeled data (without supervision)

Training data Prediction rule
D={x;, %...,X\} '

) f(x) >y

Learning

Algorithm

What can we predict from unlabeled data?
— Low-dimensional structure .
* Principal Component Analysis & 7G4 #T(PCA) (linear) | “"_ "'.’:}.,
* Manifold learning Jit1T%% > (non-linear) -,‘* e
L=




Unsupervised learning

Learning from unlabeled data (without supervision)

Training data '
D=1{x;, ..., %y} |

Learning Pcheco(licgiﬁ rule
X Yy

Algorithm

What can we predict from unlabeled data?

— Low-dimensional structure
* Principal Component Analysis &= JG 73 HT(PCA) (linear)
 Manifold learning ¥itAT %% >J (non-linear)

— Groups or clusters in the data




Unsupervised learning

Learning from unlabeled data (without supervision)

Training data Prediction rule
D={x, X,..., Xy} '

) f(x) >y

Learning

Algorithm

What can we predict from unlabeled data?

— Low-dimensional structure
* Principal Component Analysis 3= G431 (PCA) (linear)
 Manifold learning 7175 > (non-linear)

— Groups or clusters in the data
— Density estimation CZ i)




PRINCIPLE COMPONENT ANALYSIS



Principle component analysis

What is dimensionality reduction?
Why dimensionality reduction?
Principal Component Analysis (PCA)
Nonlinear PCA using Kernels



What is dimensionality reduction?

Dimensionality reduction refers to the mapping of the original high-
dimensional data onto a lower-dimensional space.

— Criterion for dimensionality reduction can be different based on different
problem settings.
* Unsupervised setting: minimize the information loss
* Supervised setting: maximize the class discrimination

Given a set of data points of d variables {x1,X2,--*,X,}
Compute the linear transformation (projection)

Pe R :xe R* wy=P'x e R™(m << d)



What is dimensionality reduction?

PT c Rmxd

Original data

reduced data

Linear transformation
[ >

x € R4

PeR¥>*m.x sy=P'xe R™

y e R™
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High-dimensional data

Handwritten digits




Why dimensionality reduction?

 Most machine learning and data mining
techniqgues may not be effective for high-
dimensional data
— Curse of Dimensionality

— Query accuracy and efficiency degrade rapidly as the
dimension increases.

* The intrinsic dimension may be small.

— For example, the number of genes responsible for a
certain type of disease may be small.



Curse of Dlmensmnallty

When dimensionality increases, data
becomes increasingly sparse in the space
that it occupies

Definitions of density and distance between
points, which is critical for clustering and
outlier detection, become less meaningful

If N, = 100 represents a dense sample for a
smgle input problem, then N, = 1001 is the
sample size required for the same sampling
density with dimension 10.

The proportion of a hypersphere with radius
r and dimension d, to that of a hyercube with
sides of length 2r and dimension d converges
to 0 as d goes to infinity — nearly all of the
high-dimensional space is “far away” from
the center

)
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e Randomly generate 500 points

e Compute difference between
max and min distance between
any pair of points



Why dimensionality reduction?

* Visualization: projection of high-dimensional data
onto 2D or 3D.

* Data compression: efficient storage and retrieval.

* Noise removal: positive effect on query accuracy.
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Application of feature reduction

* Face recognition
 Handwritten digit recognition
* Text mining

* |mage retrieval

* Microarray data analysis

* Protein classification



What is Principal Component Analysis?

* Principal component analysis (PCA)

— Reduce the dimensionality of a data set by finding a new
set of variables, smaller than the original set of variables

— Retains most of the sample's information.
— Useful for the compression and classification of data.

* By information we mean the variation present in the
sample, given by the correlations between the original
variables.

— The new variables, called principal components (PCs), are

uncorrelated, and are ordered by the fraction of the total
information each retains.



Principal components (PCs)

* Given n points in a d dimensional space, for large d, how
does one project on to a low dimensional space while

preserving broad trends in the data and allowing it to be
visualized?



Geometric picture of principal components

* Given n points in a d dimensional space, for large d, how
does one project on to a 1 dimensional space?

 Choose a line that fits the data so the points are spread
out well along the line

21



Geometric picture of principal components

* Formally, minimize sum of squares of distances to the
line.

* Why sum of squares?

22



Algebraic Interpretation — 1D

Minimizing sum of squares of distances to the line is the same
as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.
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Geometric picture of principal components

5

2nd PFincipaI|
Component, u,

5.5

6.0

1st Principal
Component, u,
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Geometric picture of principal components

e the 1t PC w is a minimum distance fitto alinein X
space

e the 2™ PC u: ijs a minimum distance fit to a line in the
plane perpendicular (FEEH T ) to the 15t PC

PCs are a series of linear least squares fits to a sample, each
orthogonal (FEE T ) to all the previous.




Algebraic derivation of PCs

Given a sample of n observations on a vector of d
variables {xi,xs, --,x,} € R?

First project the data onto a one-dimensional space

with a d-dimensional vector u; :u/u; =1:

T T T
{1.11 X1,Uq X2, -, Ug Xn}

Find u1 to maximize the variance the projected data:

n
1 _
— E (u{ x; — u] X)? = u; Su;
n

1=1

Where =" x; and S=+37" (x;—X)(x;—X)"



Algebraic derivation of PCs

e To solve max u, Su; subject to wuju; =1

u;
 Let \ be a Lagrangian multiplier

T T
L = u;Su;+ A (1—u;u)
Theorem (Lagrange multipliers): If z* is an extremum of f subject to the
constraints h;(z) = 0 there exist scalars A, ..., A, such that
Vi) + Y AiVhi(a®) =0 (1)
=1

where V f is the gradient of f. In other words, if z* is an extremum subject
to the constraints then

=0forj=1...n (2)

af (x*) N i)\iﬁhi.(.jr*)

(9.133 £

A1, ..., Ay are called Lagrange multipliers.
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Algebraic derivation of PCs

e To solve max u; Su; subject to uju; =1

u;
 Let \ be a Lagrangian multiplier

L = uSu;+A(1—uu)
8—L = Su; —A\ju; =0
ouy
Su; = A\uy
= U3 1s an eigenvector
u/ Su; = A\

= u corresponds to the eigenvector with the largest eigenvalue A\



Algebraic derivation of PCs

* To find the second component u:

* Solve the following

max u, Suy subject to uyuy; =1 & uj uy =0
s

— uy is the eigenvector with the second largest eigenvalue X,



Algebraic derivation of PCs

* Main steps for computing PCs

— Calculate the covariance matrix S
S =y (xi—x)(x —%) "
or first center the data:  {x},x5,---,x;} and x' =0
let X = [x],x},--,x},] € R»" ;then §=1XX"'
— Find the first m eigenvectors {u;}72,
— Form the projection matrix P = [u; uy ---u,,| € R¥*™

— A new test point can be projected as:

Xnew € R — P X0 € R™



Algebraic derivation of PCs

y=P'xe R™

* Getting the old data back?

— If Pis a square matrix, we can recover x by
x=(P")"ly=Py=PP'x

— Here P is not full, but we can still recover x
by x= Py = PP"x, and lose some information

* Objective

— Lose least amount of information



Optimality property of PCA
Reconstruction

Dimension reduction
X ERan —)Y:PTX c Rmxn *)lX, :PPTX c Ranl

X c Rdxn

PTX c Rmxn

- I - .

P ¢ R*xm

Rmxd

X' € R




Optimality property of PCA
Main theoretical result:

The matrix P consisting of the first m eigenvectors of the
covariance matrix S solves the following min problem:

arg min — arg min | X - PP'X]|?
PcRdxXm PeRdxm

— arg max trace(X' PP'X)

Reconstruction PeRdxm
error — arg max trace(P'XX'P)
PeRde
= arg max t’race(PTSP)
PcRdxm
subject to P'P=1,

PCA projection minimizes the reconstruction error among all

linear projections of size m.
33



PCA for image compression

Original
Image




Nonlinear PCA using Kernels

Rewrite PCA in terms of dot products

Assume the data has been centered, i.e. ) ,xi=0

The covariance matrix S can be writtenas 5= 1% x;x/

If u is an eigenvector of S corresponding to nonzero
eigenvalue

1
Zxx u—)\uiu—n)\ (x; u)x;

Eigenvectors of S lie in the space spanned by all data points.



Nonlinear PCA using Kernels

Su :EinxiTu =AU=u =%Z(XTU)Xi
n4 nA %

The covariance matrix can be written in matrix form:

1
S==XX",where X =[x,,X,, -, X.].

N
U=Zaixi:Xa SU=EXXTX(1=/IX(1

n

%(XTX)(XTX)az/I(XTX)a

s E(XTX)(I:/IG e H a:ﬂ/a
n

u'g(x') = Zai¢(XiT)¢(XI) = Zai K(X;,X") 6



Comments on PCA

Linear dimensionality reduction method
Can be kernelized

Many nonlinear dimensionality reduction methods (Isomap,
graph Laplacian eigenmap, and locally linear embedding/LLE)
can be described as kernel PCA with a special kernel

Non-convex optimization problem
But easy to solve...
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From supervised to unsupervised classification

CLUSTERING

38



Clustering

Are there any “groups” in the data ?
What is each group ?
How many ?

How to identify them?



Clustering

 Group the data objects into subsets
or “clusters”:

— High Similarity Within Clusters . AAAL 4 clusters s circleandballs, 3 clusters
— Low similarity between clusters f
« Acommon and important task that & " ° .
finds many applications in Science, L :

Engineering, information Science, and

threejoinedeircles, 3 clusters squiggles, 4 clusters
other places N T
— Group genes that perform the same T B @%}
function AR ) p mwﬁ
— Group individuals that has similar 1 1 e
political view e e H

— Categorize documents of similar topics
— ldentify similar objects from pictures



Clustering

Input: training set of input points
Dirain = {X1, oy Xp }
Output: assighment of each point to a cluster
(C(1),...,C(n)) where C(:) €{1,...,k}



K-means clustering

* Create centers and assign points to centers to
minimize sum of squared distance




K-means objective

* Each cluster is represented by a centroid u

* Encode each point by its cluster center, pay a
cost for deviation

 Loss function based on reconstruction

mn
Lossymeans Z o) — x; H2
=1



K-means algorithm

. ] L o2
Goal: m;nmén;Hucm X; |

e Strategy: alternating minimization
— Step 1: if know cluster centers 1, can find best C

— Step 2: if know cluster assignments C, can find best
cluster centers

44



K-means algorithm

Optimize loss function Loss(u,C)

. . 2
m;ﬂ mclﬂz HMC(j) — x|
7=1
(1) Fix n, optimize C

(1), >ZH“C(” %1l

Assign each point to the nearest cluster center

(2) Fix C, optimize /L

mln X
(1), 0(2) oot uc)Z””C(” il

Solution: average of points in cluster i, exactly second step (re-center)



More on K-Means objective

min

min tr (X — ZU)(X — ZU)")

Z:Ze{0,1}txk z1=1 U

* solving for Uyields: v=2tx=(z2)"'2'X

Z'X

(2'2)""

sum of cluster 1 rows in X

sum of cluster k rows in X

# cluster 1 - -- 0
0 -+« # cluster k|

1/(# cluster 1) --- 0

6 1/(# clilster k) |




More on K-Means objective

min min tr (X — ZU)(X — ZU)")
7:Z€{0,1}txk Z1=1 U

* solving for Uyields: v=2tx=(z2)"'2'X

mean of cluster 1 rows in X |
U= (Z'2)"'ZX =

mean of cluster k£ rows in X

row 1 of X — mean of row 1 cluster |

row t of X — mean of row ¢ cluster



A few facts about K-means

* Simple and efficient
* Always converges

— Why?

— To a local minimum

* But...
— K-means problem is NP-hard
— No global solution
— Not robust to noise and outliers



K-means for image compression

Original K=2 K=8
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Want to Learn More?

. BLEBEN, A
o G, A

* Andrew Ng’s Machine learning online course (Coursera)



Wrapping up Machine Learning



Machine Learning in Al

&
-}

Aswer = N&uralmgurrtlﬂll
rithi:

a Drl
[:nnuulutinn

mm‘nrl:ed

Seale Structure
-= Helat'ﬂﬂ“M“lt'I]le =Filter n
% : E% re Ic E .e=
;g - . E Preserved By bonde T wg
Y o Visual : Pulicy = 2
s= = Adaptive s Huhustn o -
= I Human =Kn0nlrdge N 2 = &
n:mge CIJ i g int 1ot =
e G =1 —
° inference £ Poliey =5 ad m Inl‘.umpt age%m
g de‘tect 10N e€Mbedding Exq. Zwg Continual - - k=
n representation g sallees EE:‘% Social = ™ iy
s a g 2o LSTM Z 5 e
1e a: I I l NEg 5 S Mipntion r=5
] © o < + E = E 9 = E | o
5 S o 3 o = At;t ngﬁ‘":fE
adversarial g — = = : - ] Sa> Fair =
framework approach G.) — i T L;IE ms
reinforcement predlctwnbo ] — ¥ - = S =
< generation recognltlonmw“ = S £ 27FE Y-S
s 3 AT L El = as SZ 2 G
9 _‘ 2 plannlng n = =logic ‘W= = 55 =ecn
; K Enodels © - 2 “ QRS =
s [ opnmlsz$iz;“~ G i i E | i hmmeni=
feature 2 ““‘h il = = =
I!Sggyxd];telgge moq machine n e u a m Relation Kernglm Temperal £ - Model al - o .
E e Constraint = = =
efficientconvolutionaly;geo Al 3 SPuper‘"SBd Advers rla|§ 5=F
= erson = =
= g

¥ Memor
Gradient=gy:=» Heterngennus v

al M2

=

B
=

=

qi‘h

il

kurﬁgﬂmmmm utlty m  Dptimal ener
SRepresentation

Distriminative |, =

"’Wm it Entit

';E g‘ﬂdeuPerSSuge!lEilaSSIﬁBatlunl— P['I": ErII|.1I:lnIt'-E2r L Hutoeneoder =

=1 £ u.:.D NAMIc = i
'—"E e = laarn = Explore E%m‘%
ey sarial l— cﬁEu
f"_é' Isamnllumamittanh [”"ﬂggp Mnamm ptlma v:i:‘;
i Cluster E,.I,E."m"g probabilistic - Distributed Infer

52



Subjective Popularity

Machine Learning History

&
R

’

%

Perceptron

Created by erogol

|
1960

[
1965

Vapnik, Cortes

J.R. Quinlan
Breiman
Freund, Schapire
Linnainmaa 1970
Werbos
Decision Tree, ID3 B
& @ -
2N
9
.\(\“ LeCun
& Rumelhart, Hinton, Williams
Hetch, Nielsen
Hochreiter et. al.
Hinton
orks / Bengio
Neural Netw e J. Schmidhuber LeCun
@ IDSIA Andrew Ng.
| | J >
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Our Machine Learning Results

* Image impainting
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Our Machine Learning Results

* Traffic modeling
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Our Machine Learning Results

* Image tagging

01724
Motor
Bicycle f \

0.2045 05035 /
0.1831 \ m /02987
A People [

Cow

03080 \ 01725

(a) “ocean”, “fish” (b) “sky”, “grass” TN s By
0.3722

=

Ground Truth car car, motorbike bus, car dog
ML-LRC car, bus car, motorbike, bike bus, car, people, motorbike dog, cat
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Our Machine Learning Results

* Background modeling

57



Our Machine Learning Results

* Word representation

Madrid - Spain = Paris - France,

‘ good - best = great — greatest

king-man =queen-woman

S
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Our Machine Learning Results

* Video description with bullet-screen
comments

22:11

23:06

24:20

2597

Nian Nian has

slanted eyebrows.

Mr. Su used to be

Brother Su. How sad.

[ feel sorry for both
Jing Rui and Su

from their conversation.

Mr. Su lost
a good friend

forever!

Jing Rui leaves the
place where his
heart broke and

dreams faded away.

keywords by LDA:

‘Su’, ‘say’, ‘really’, ‘Jing Rui’,

‘leave’ ,

‘eyebrow” ,

‘Nian Nian’ .

‘come’

‘friends’ ., ‘love’
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Our Machine Learning Results

* Poetry generation from images

_ _ - — il KPR o
I sing a fishing song on a boat in the lake overflowing its bank,
S —RRARRS,
rowing oars with the sun setting in the west.

KITHHKF A,

The moon reflected in the West Lake comes in my mind,
ARt Kk

and the east breeze blowing across the WulLing River.
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Wrapping up the course



PR AT KN

F—# 5 N LR BEMR/Introduction and Agents
(chapters 1,2)

Spe

e 5] /83K fi# /Search (chapters 3,4,5,6)

P

=3 FiR 5 H#EFE /Logic (chapters 7,8,9)

FUUER . AT FH ST /Uncertainty (chapters
13,14)

B HE 5 52 >]/Learning (chapters 18,20)



Chap1-2. Intro

Rational agents

The performance measure evaluates the environment
sequence

PEAS descriptions define task environments

Environments are categorized along several dimensions:

observable? deterministic? episodic? static? discrete? single-
agent?
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Chap3. Uninformed search

A problem can be defined by 4 items: initial state (FJAIRAS) |, actions (fT
zl)) orsuccessorfunctlon (G4 | goaltest CHERIIR) | path
cost (PEAETRFE)

A solution is a sequence of actions leading from the initial state to a goal state

Uninformed search strategies use only the information available in the
problem definition

Breadth-first search

Depth-first search

Depth-limited search

Iterative deepening search
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Chap4. Informed search

e Best-first search (FiELIHR)

— Greedy best-first search
— A* search

* Heuristics
— Heuristics (J8 X RED
— Admissible heuristics (A SKZHH) 5 & KA
— Relaxed problems (F 5t o] /&)

e Local search algorithms
— Hill-climbing search
— Simulated annealing search (LB k2
— Genetic algorithms CGRALH )



Chap6. Game search

e Games

* Perfect play (HALEEES)
— minimax decisions

— a-B pruning (BIf%)
* Games of chance (& JLRKEKIIFK)
— ExpectiMinmax (HHEE K /Nl ORAE D




Chap7. Logical agents

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundness: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic
— ARG R
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Chap8-9. First-Order Logic

* New concepts
— Objects (%)
— Relations (ZRHR)
— Functions (BRZ0)
* |Inference
— Unificatione —
— Forward and backward chaining
— Resolution
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Chap13. Uncertainty

Joint probability distribution specifies probability of every atomic
event

G R TR B R R AR, T

Inference
— Queries can be answered by summing over atomic events

g%i@‘ﬁ%ﬁﬁ@?ﬁw i A SR FAE I 2% HAIN ) 5 2Ok [B] 2

— For nontrivial domains, we must find a way to reduce the joint size
* Independence and conditional independence provide the tools

Bayes’ Rule

71



Chap14. Bayesian networks

Bayesian networks provide a natural representation
for (causally induced) conditional independence

Topology + CPTs = compact representation of joint
distribution

Inference

Naive Bayes model



Chap18,20. Learning

* Supervised learning

— Given input data descriptions D ={x,, x, ..., x. .}, and
target valuesy,, y,, .. .Y, learn a prediction function f(X) >y

— Classification: y,, y,, . . . y,are discrete class labels

* Naive Bayes model

Decision tree learning

K nearest neighbor

Least squares classification
SVM

— Regression: y continuous

 Least squares regression



Notes on building an SVM

Make sure you understand the math

Use some simple synthetic data (FE#E#E)  to verify
Use the same kernel during training and testing

When calculating b, remember

to use the same kernel!

Check a; to debug
— Do they satisfy the constraints?



Calculate b in SVM

Dual optimization problem:

n
maxZaz — — Z ;oYY ( X;I_XJ) subject to 0< a; < C,V1
i,j=1

Z?:l a;y; =0

b can be recovered by

b=vy; — Zozjy‘7 (x5,%x;) for any i that a; # 0

E a;y; K(x;,x;) for any i with maximal «;

b= aAVGi:e; 20 | Yi — Z ajyjK(Xz'an) |
j=1



Chap18,20. Learning

* Unsupervised learning

— Given input data descriptions D = {x, x, . . .

learn a prediction function f(X)—>y
— Clustering: y discrete

e Kmeans

— Dimensionality reduction: y continuous

* Principle component analysis



